三点共线计算器

点A (x1,y1) =
点B (x2,y2) =
点C (x3,y3)=

方法一:取两点确立一条直线,计算该直线的解析式 .代入第三点坐标 看是否满足该解析式 (直线与方程).

方法二:设三点为A、B、C .利用向量证明:λAB=AC(其中λ为非零实数).

方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线.

方法四:用梅涅劳斯定理.

方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”.可知:如果三点同属于两个相交的平面则三点共线.

方法六:运用公(定)理 “过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法.

方法七:证明其夹角为180°.

方法八:设A B C ,证明△ABC面积为0.